
Lecture 6: Log-linearization

Dr. Lei Pan

1 Lineariztion v.s. Log-linearization

1.1 Lineariztion and deviation form

For non-linearized equations, linearization means one order approximation. In mathe-
matics, approximation means that we first need to find a point from where we approxi-
mate. Typically speaking, this point is the steady state values of the variables. For dif-
ferent variables, the steady state will be different significantly. This is the reason why we
need deviation form which is unit-less variables.

The definition for (percentage) deviation form of a variable xt is:

x̃t =
xt − x∗

x∗

where x∗ stands for the steady state value of xt. The Taylor expansion of f (x) is:

f (x) = f (x∗) + f ′(x∗)(x − x∗) +
f ′′(x∗)

2!
(x − x∗)2 + ...

For multivariate function f (x, y) evaluating at points (x∗, x∗), we have:

f (x, y) = f (x∗, y∗) + fx(x∗, y∗)(x − x∗) + fy(x∗, y∗)(y − y∗) + ...

Approximation techniques via Taylor series approximation is sometimes called perturba-
tion methods.

1.2 Log-linearization

Log-linearization involves 1st order approximation where we manipulate variables to %
difference from log-difference:

x̃t ≈ logxt − logx∗
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this is actually the method from Uhlig(1999). We can show why above approximation
holds since

logxt − logx∗ = log(
xt

x∗
) = log(

xt − x∗

x∗
+ 1) ≈ x − x∗

x∗
= x̃t

and this is the reason why we call it log-linearization. Log-linearization make the lin-
earization more easier and so we often take natural logarithms at both sides of the equa-
tions before make 1st order Taylor expansion(simple linearization). The above reasoning
will ensure that log-linearization will have the same results with the one we do not apply
logarithms before we linearize. The following is the so-called Cookbook approach for
log-linearization:

1. take (natural) logs of both sides of expression;

2. Taylor series approximation: 1st order approximation;

3. simplify and collect terms together so that x̃t ≡ x−x∗
x∗ ≈ logxt − logx∗

2 Log-linearization Example

1. y = f (x), y∗ = f (x∗), where x∗, y∗ are steady state values of x and y.

2. Cookbook approach: logy = log f (x), logy∗ + y−y∗
y∗ ≈ log f (x∗) + f ′(x∗)

f (x∗) (x − x∗), we

have ỹ = x∗ f ′(x∗)
f (x∗) x̃.

3. Or taking 1st order approximation directly at both side, we have |y∗ + y − y∗| =
f (x∗) + f (x∗)(x − x∗), we get the same results as in step 2.

4. A further example: the Cobb-Douglass production function

yt = AtKα
t N1−α

t

Taking logs at both sides, we have

logyt = logAt + αlogKt + (1 − α)logNt (1)

Since this is true for any time t, it must be true at steady state. Hence, we have:

logy∗ = logA∗ + αlogK∗ + (1 − α)logN∗

According to the cookbook approach, we have:

logy∗+
yt − y∗

y∗
= logA∗+

At − A∗

A∗ + α(logK∗+
Kt − K∗

K∗ )+ (1− α)(logN∗+
Nt − N∗

N∗ )
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then we have:
ỹt = Ãt + αK̃t + (1 − α)Ñt (2)

There is another convenient way to do the log-linearization. We can simply take
differentiation at both sides of Equation (1) and evaluating at the steady states:

dlogyt = dlogAt + αdlogKt + (1 − α)dlogNt

dyt

y∗
=

dAt

A∗ + α
dKt

K∗ + (1 − α)
dNt

N∗

if we define dyt = yt − y∗ and imilar for other variables, then we get the same result
as in Equation (2).

5. Another example: share-weighted percentage deviation.

yt = ct + It

Taking logs at both sides, logyt = log(ct + It). Then 1st order Taylor expansion, we
have:

logy∗ +
yt − y∗

y∗
= log(c∗ + I) +

ct − c∗

c∗ + I∗
+

It − I∗

c∗ + I∗
(3)

Recall the definition of log-linearized variables as percentage deviations from steady
state, hence, we have: ct − c∗ = c∗ c̃t and It − I∗ = I∗ Ĩt. Substitute into Equation (3),
can get:

ỹt =
c∗

y∗
c̃t +

I∗

y∗
Ĩt

6. A further example: law of motion for capital (i.e., capital accumulation equation).

Kt+1 = It + (1 − δ)Kt (4)

At steady state, capital is constant over time, thus: Kt+1 = Kt = K∗, and I∗ = δK∗.
Taking logs, we have:

log Kt = log (It + (1 − δ)Kt)

Taking 1st order Taylor expansion, we have:

log(It + (1 − δ)Kt) ≈ log(I∗ + (1 − δ)K∗) +
∂

∂It
log(It + (1 − δ)Kt)

∣∣∣∣
∗
(It − I∗)

+
∂

∂Kt
log(It + (1 − δ)Kt)

∣∣∣∣
∗
(Kt − K∗)

Thus,

log K∗ +
Kt+1 − K∗

K∗ ≈ log(I∗ + (1 − δ)K∗) +
It − I∗

I∗ + (1 − δ)K∗ +
(1 − δ)(Kt − K∗)

I∗ + (1 − δ)K∗
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At steady state: I∗ = δK∗ ⇒ I∗ + (1 − δ)K∗ = K∗ Therefore, we can get:

log K∗ +
Kt+1 − K∗

K∗ = log (I∗ + (1 − δ)K∗) +
It − I∗

K∗ + (1 − δ)
Kt − K∗

K∗

We want everything in terms of tilde variables. Also note: It−I∗
K∗ = I∗

K∗ · It−I∗
I∗ = I∗

K∗ Ĩt,
Thus, final expression:

K̃t+1 =
I∗

K∗ Ĩt + (1 − δ)K̃t

Since I∗
K∗ = δ (from the steady-state condition), we simply the above eqaution to:

K̃t+1 =
I∗

K∗ Ĩt + (1 − δ)K̃t = δ Ĩt + (1 − δ)K̃t (5)

Alternatively, ff we taking differentiation at both sides of Eq.(4), it seems to be much
simpler:

dKt+1 = dIt + (1 − δ) dKt

evaluating at steady states, it will produce the same result as in Eq.(5).

7. Consumption Euler equation: (
Ct+1

Ct

)σ

= β(1 + rt)

Taking natural logs of both sides:

σ log
(

Ct+1

Ct

)
= log β + log(1 + rt)

Differentiate for both sides:

σ (d log Ct+1 − d log Ct) = d log β + d log(1 + rt)

We know log(1+ rt) ≈ rt (valid when rt is small). The discount factor β is related to
the steady-state real interest rate r∗ by: β = 1

1+r∗ (the intertemporal tradeoff: people
discount the future at a rate related to the return on saving/investing). Then the
above equation can be written as:

σ
(
C̃t+1 − C̃t

)
=

1
1 + r∗

(drt) = βr̃t ≈ r̃t

if the discount factor β is large enough. Here we define: r̃t = rt − r∗ as the absolute
deviation not percentage deviation. In general, for the variables that are already in
percentage form, such as interest rate, inflation rate etc., the percentage deviation
does not make any sense for these variables, thus we define absolute deviation (i.e.,
the variable minus its steady state value).
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